非线性方程求解 二分搜索法求解方程在给定区间内的实根 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 import mathimport numpy as npimport randomdef RootHalves (left,right,step,eps,result,m ): n=0 js=0 z=left y=FunctionValue(z) while z<=(right+step/2 ) and n!=m: if abs (y)<eps: n=n+1 result.append(z) z=z+step/2.0 z=FunctionValue(z) else : z1=z+step y1=FunctionValue(z1) if (abs (y1)<eps): n=n+1 result.append(z) z=z1+step/2 y=FunctionValue(z) else : if y*y1>0.0 : y=y1 z=z1 else : js=0 while js==0 : if abs (z1-z)<eps: n=n+1 result.append((z1+z)/2.0 ) z=z1+step/2.0 y=FunctionValue(z) js=1 else : z0=(z1+z)/2.0 y0=FunctionValue(z0) if abs (y0)<eps: result[n]=0 n=n+1 js=1 z=z0+step/2.0 y=FunctionValue(z) else : if (y*y0)<0.0 : z1=z0 y1=y0 else : z=z0 y=y0 return (n)
对二分搜索法的一些测试 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 def PolyValueOneDim (dCoff,stNo,dx ): dValue=dCoff[stNo-1 ] for st in range (stNo-2 ,-1 ,-1 ): dValue=dValue*dx+dCoff[st] return (dValue) def FunctionValue (dx ): dCoff=[-20 ,7 ,-7 ,1 ,3 ,-5 ,1 ] dValue=PolyValueOneDim(dCoff,7 ,dx) return dValue left=-2 right=5 eps=1.e-8 step=0.2 result=[] rootNum=RootHalves(left,right,step,eps,result,10 ) print ("rootNum = {}" .format (rootNum))print (result)
rootNum = 2
[-1.4024630278348929, 4.33375544846058]
牛顿(newton)法求解非线性方程的一个实根 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 def RootNewton (x,eps,js ): k=1 r=js x0=x y=FunctionValue(x0) y1=FunctionCValue(x0) d=eps+1.0 while (d>eps or abs (d-eps)<eps)and (r!=0 ): if abs (y1)<eps: return (-1 ) else : x1=x0-y/y1 y=FunctionValue(x1) y1=FunctionCValue(x1) d=abs (x1-x0) p=abs (y) if p>d: d=p x0=x1 r-=1 x=x1 k=js-r return (k,x)
对牛顿法的一些测试 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 def FunctionValue (dx ): dCoff=[-1 ,0 ,-1 ,1 ] dValue=PolyValueOneDim(dCoff,4 ,dx) return dValue def FunctionCValue (dx ): dCoff1=[0 ,-2 ,3 ] dValue=PolyValueOneDim(dCoff1,3 ,dx) return dValue x=1.5 print ("------------RootNewton()---------" )k,x=RootNewton(x,1.e-6 ,60 ) print ("k={} x={}" .format (k,x))
------------RootNewton()---------
k=60 x=1.465571231876768
埃特金(AitKen)法求解非线性方程的一个实根 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 def RootAitken (x,eps,js ): r=0 flag=0 x0=x while flag==0 and r!=js: r+=1 u=FunctionValue(x0) v=FunctionValue(u) if abs (u-v)<eps: x0=v flag=1 else : x0=v-(v-u)*(v-u)/(v-2.0 *u+x0) x=x0 r=js-r return (r,x)
对埃特金(AitKen)法的一些测试 1 2 3 4 5 6 7 8 9 def FunctionValue (dx ): dCoff=[6 ,0 ,-1 ] dValue=PolyValueOneDim(dCoff,3 ,dx) return dValue r,x=RootAitken(0 ,1.e-6 ,20 ) print ("---------RootAitKen------------" )print ("k={} x={}" .format (r,x))
---------RootAitKen------------
k=13 x=1.9999994417336957
连分式(Fraction)法求解非线性方程的一个实根 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 def RootFraction (x,eps ): r=10 q=1.0e+35 h=0 a=[] y=[] x0=x while r!=0 : r=r-1 j=0 it=r while j<=7 : if j<=2 : z=x0+0.1 *j else : z=h y.append(FunctionValue(z)) h=z if (j==0 ): a.append(z) else : m=0 i=0 while m==0 and i<j: if abs (h-a[i])<=eps: m=1 else : h=(y[j]-y[i])/(h-a[i]) i+=1 a.append(h) if m!=0 : a[j]=q h=0.0 for i in range (j-1 ,-1 ,-1 ): if abs (a[i+1 ]+h)<=eps: h=q else : h-=y[i]/(a[i+1 ]+h) h=h+a[0 ] if abs (y[j])>=eps: j+=1 else : j=10 r=0 x0=h x=h return (10 -it,x)
对连分式(Fraction)法的一些测试 1 2 3 4 5 6 7 8 9 10 def FunctionValue (dx ): dCoff=[-1 ,0 ,-1 ,1 ] dValue=PolyValueOneDim(dCoff,4 ,dx) return dValue x=1.0 print ("-----------RootFraction()---------" )k,x=RootFraction(x,1.0e-6 ) print ("k={} x={}" .format (k,x))
-----------RootFraction()---------
k=10 x=47.30994086939946
梯度(Gradient)法求解非线性方程组的一组实根 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 def RootGradient (eps,x,js ): n=len (x) y=[x for x in range (n)] r=js f=FunctionValue(x,y) while f>=eps: r=r-1 if r==0 : return js d=0 for j in range (n): d=d+y[j]*y[j] if abs (d)<=eps: return -1 s=f/d for j in range (n): x[j]=x[j]-s*y[j] f=FunctionValue(x,y) return (js-r)
对梯度(Gradient)法的一些测试 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 def FunctionValue (x,y ): f1=x[0 ]-5.0 *x[1 ]*x[1 ]+7.0 *x[2 ]*x[2 ]+12.0 f2=3.0 *x[0 ]*x[1 ]+x[0 ]*x[2 ]-11.0 *x[0 ] f3=2.0 *x[1 ]*x[2 ]+40.0 *x[0 ] z=f1*f1+f2*f2+f3*f3 df1=1.0 df2=3.0 *x[1 ]+x[2 ]-11 df3=40 y[0 ]=2.0 *(f1*df1+f2*df2+f3*df3) df1=10.0 *x[1 ] df2=3.0 *x[0 ] df3=2.0 *x[2 ] y[1 ]=2.0 *(f1*df1+f2*df2+f3*df3) df1=14.0 *x[2 ] df2=x[0 ] df3=2.0 *x[1 ]; y[2 ]=2.0 *(f1*df1+f2*df2+f3*df3) return z js=500 x=[1.5 ,6.5 ,-5.0 ] i=RootGradient(1.0e-6 ,x,js) print ("------------RootGradient()-------------" )if i>0 and i<js: for i in range (3 ): print ("x({})={}" .format (i,x[i]))
------------RootGradient()-------------
x(0)=1.0001884137008277
x(1)=5.00043177648948
x(2)=-4.00038848410507
蒙特卡洛(MonteCarlo)法求非线性方程的一个实数根 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 def RootMonteCarloReal (x,b,m,eps ): a=b k=1 r=1.0 X=x y=FunctionValue(X) while a>eps or abs (a-eps)<=0 : x1=random.uniform(1.0 ,5.0 ) x1=-a+2.0 *a*x1 x1=X+x1 y1=FunctionValue(x1) k+=1 if abs (y1)>abs (y) or abs (abs (y1)-abs (y))<=eps: if k>m: k=1 a/=2.0 else : k=1 X=x1 y=y1 if abs (y)<eps: x=X break x=X return x
对 蒙特卡洛(MonteCarlo)法的一些测试 1 2 3 4 5 6 7 8 def FunctionValue (x ): y=math.exp(-x*x*x)-math.sin(x)/math.cos(x)+800.00 return y x=0.5 x=RootMonteCarloReal(x,1 ,10 ,1.0e-6 ) print ("-----------RootMonteCarloReal()---------------" )print ("x={}" .format (x))
-----------RootMonteCarloReal()---------------
x=10.994575404027522